Periodic boundary value problems for nonlinear impulsive fractional differential equation
نویسندگان
چکیده
In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional derivative by using Banach contraction principle.
منابع مشابه
Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملTriple Positive Solutions for Boundary Value Problem of a Nonlinear Fractional Differential Equation
متن کامل
Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملSolvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance
Differential equation with fractional order have recently proved valuable tools in the modeling of many phenomena in various fields of science and engineering [1-5]. Recently, many researchers paid attention to existence result of solution of the boundary value problems for fractional differential equations at nonresonance, see for examples [6-15]. But, there are few papers which consider the b...
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کامل